

Sommario

In questo articolo viene illustrato l'approccio per l'esecuzione di una valutazione di vulnerabilità sismica di tre fabbricati facenti parte di un complesso di edifici industriali costruiti negli anni '60 del secolo scorso ed ubicati in Provincia di Torino. In esso viene descritta la metodologia utilizzata per poter effettuare le necessarie valutazioni, in termini di resistenza e capacità delle strutture degli edifici in esame, fedeli al reale comportamento degli stessi sotto l'azione sismica.

Vengono descritte e riportate le indagini e le ricerche preliminari effettuate per poter realizzare idonei modelli di calcolo agli elementi finiti che rappresentino geometricamente e meccanicamente le varie strutture, assegnando ad esse un corretto "Fattore di Confidenza" e per poter definire correttamente gli spettri sismici di progetto da utilizzare.

Successivamente vengono esposte le analisi condotte sulle strutture dei tre fabbricati, partendo dall'analisi statica lineare ed arrivando a svolgere un'analisi elasto-plastica non lineare statica di tipo Pushover, a valle di una preventiva analisi dinamica lineare.

Al termine si trattano le verifiche dei meccanismi duttili e dei meccanismi fragili, richieste dalle NTC 2008 a valle delle analisi Pushover e vengono indicati i risultati delle analisi svolte, con evidenza degli indici di rischio sismico individuati per le strutture dei tre fabbricati.

Modellazione delle strutture

Capannone 1 e 2-3

I modelli di calcolo utilizzati, messi a punto mediante l'ausilio del software ad elementi finiti Midas Gen 2014 vers. 2.1, distribuito da Harpaceas S.r.l. di Milano, sono modelli tridimensionali con presenza di elementi "beam" monodimensionali ed elementi "plate" bidimensionali.

Gli elementi "beam" sono stati impiegati per modellare le colonne e gli elementi costituenti le travi a shed prefabbricate. Gli elementi bidimensionali sono stati adoperati, invece, per riprodurre la rigidezza delle solette di copertura e ricreare in modo corretto i modi propri di vibrare dei due fabbricati.

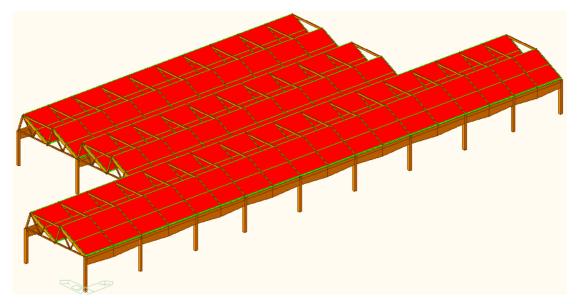


Figura 0-1 Modello di calcolo del Capannone 1

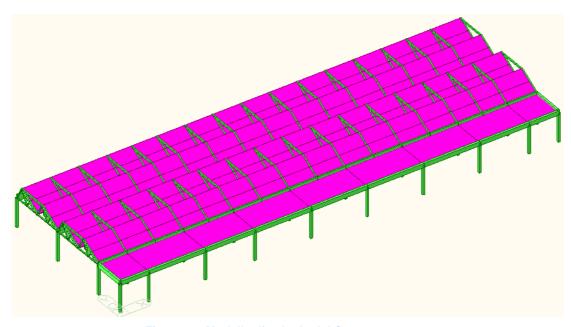


Figura 0-2 Modello di calcolo del Capannone 2 e 3

Fabbricato B

Il fabbricato B è stato modellato mediante l'ausilio del software ad elementi finiti Midas Gen 2014 vers 2.1. Il modello di calcolo messo a punto è di tipo tridimensionale, con presenza di soli elementi "beam", rappresentanti sia i pilastri e le travi in c.a. sia i maschi murari e le architravi in muratura. Per gli elementi in muratura è stata impiegata una schematizzazione a telaio equivalente assegnando le relative proprietà geometriche e meccaniche alle sezioni resistenti.

La strutture sono state vincolate alla base dei maschi murari mediante vincolo esterno di incastro mentre la connessione tra gli elementi è risultata di incastro interno, ossia con continuità strutturale in tutte le membrature (maschi murari e architravi).

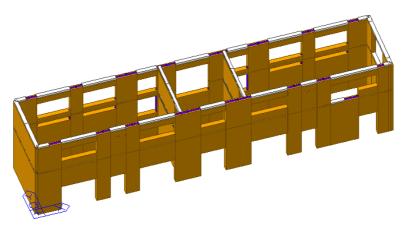


Figura 0-3 Modello tridimensionale del fabbricato B

Analisi dinamica lineare

L'analisi dinamica lineare con spettro di risposta, o più semplicemente analisi modale, rappresenta il metodo di analisi di riferimento per determinare gli effetti dell'azione sismica. L'aspetto più importante di questo tipo di analisi sta nel fatto di operare in campo elastico lineare.

Tabella 0-1 Risultati dell'analisi modale del Capannone 1

Node	Mode	U	IX	U	ΙΥ	U	Z
	VALUE				-		
	Mode	Frequency				Period	
	No	(rad/sec)		(cycle/sec)		(sec)	
	1		8.3755	, , , ,	1.333		0.7502
	2		8.596		1.3681		0.7309
	3		9.3373		1.4861		0.6729
	4		9.7674		1.5545		0.6433
	5		11.3259		1.8026		0.5548
	6			2.4692		0.405	
	7	17.5495		2.7931		0.358	
	8	19.4213		3.091		0.3235	
	9		19.7912		3.1499		0.3175
	10		26.2369		4.1757		0.2395
MODAL	PARTICIP	ATION MASS	SES PRINTOU	Т			
	Mode	TRAN-X		TRAN-Y		TRAN-Z	
	No	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)
	1	79.4508	79.4508	0.0151	0.0151	0	0
	2	0.0165	79.4674	99.8022	99.8173	0	0
	3	4.6402	84.1076	0.0014	99.8187	0	0
	4	4.1336	88.2412	0.0027	99.8215	0	0
	5	0.8601	89.1012	0	99.8215	0	0
	6	3.0824	92.1836	0	99.8215	0	0
	7	0.1726	92.3562	0	99.8215	0	0
	8	5.6197	97.9759	0	99.8215	0	0
	9	0.0007	97.9766	0.1609	99.9824	0	0
	10	1.9649	99.9415	0	99.9825	0	0

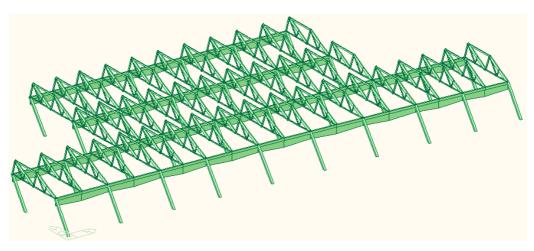


Figura 0-1 Forma modale n°2 del Capannone 1 [T=0.73s]

HARPACEAS s.r.I • Viale Richard, 1 • 20143 Milano telefono + 39 02 891741 • fax + 39 02 89151600 info@harpaceas.it •harpaceas@scacert.it• www.harpaceas.it

Tabella 0-2 Risultati dell'analisi modale del Capannone 1

Node	Mode	u	IX	U	ΙΥ	U	IZ
	VALUE	ANALYS	15				
	Mode	Frequency				Period	
	No	(rad/sec)		(cycle/sec)		(sec)	
	1		9.3028		1.4806		0.6754
	2		10.1682		1.6183		0.6179
	3		10.6137		1.6892		0.592
	4		13.5499		2.1565		0.4637
	5		19.4161		3.0902		0.3236
	6		22.4512		3.5732		0.2799
	7	26.0732		4.1497		0.241	
	8	32.8818		5.2333		0.1911	
	9		44.4435		7.0734		0.1414
	10		62.9279		10.0153		0.0998
MODAL	PARTICIP	ATION MASS	SES PRINTOU	Т			
	Mode	TRAN-X		TRAN-Y		TRAN-Z	
	No	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)
	1	0.0002	0.0002	99.7245	99.7245	0	0
	2	80.8782	80.8784	0.0024	99.7269	0	0
	3	16.4257	97.3041	0.0048	99.7317	0	0
	4	0.166	97.4702	0	99.7317	0	0
	5	1.0493	98.5195	0	99.7317	0	0
	6	0	98.5195	0.2567	99.9885	0	0
	7	0.2341	98.7536	0	99.9885	0	0
	8	1.2446	99.9982	0	99.9885	0	0
	9	0.0016	99.9998	0	99.9885	0	0
	10	0	99.9998	0.0019	99.9904	0	0

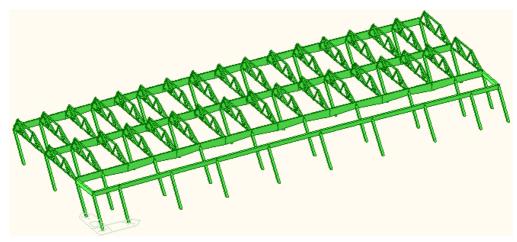


Figura 0-2 Forma modale n°1 del Capannone 2 e 3 [T=0.67s]

Tabella 0-3 Risultati dell'analisi modale del Fabbricato B

Node	Mode	U	Х	L	ΙΥ	U	ız
						EIGENVALUE ANA	
	Mode	Frequ		iency		Period	
	No	(rad,	/sec)	(cycle/sec)		(sec)	
	1	40.5	905	6.4602		0.1548	
	2	62.1	1268	9.8878		0.1	011
	3	68.9	9628	10.9758		0.0911	
	4	73.8	3888	11.7598		0.085	
	5	88.39		14.0677		0.0711	
	6	126.1076		20.0706		0.0498	
	7	141.	9325	22.5	5893	0.0	443
	8	186.	2022	29.	635	0.0	337
	9	227.	3735	36.3	1876	0.0	276
	10	241.	4527		1284		026
1	11		5433		2386		255
	12		4555		7049		214
	13		6174	48.9588		0.0204	
	14		2096	53.1911		0.0188	
	15		.816	61.882		0.0162	
	16	409.1659		65.1208		0.0154	
	17	564.091		89.7779		0.0111	
	18	613.2485		97.6015		0.0102	
	19	796.481 1885.2321		126.7639 300.044		0.0079 0.0033	
	20	1885	.2321			AL PARTICIPATION MASS	
	Mode	TRA	N V	TDA	(N-Y	1	N-Z
	No	MASS(%)	SUM(%)	MASS(%)	SUM(%)	MASS(%)	SUM(%)
	1	0.3326	0.3326	64.1	64.1	0	0
	2	6.1789	6.5115	15.373	79.473	0.0001	0.0001
	3	64.6821	71.1936	0.5357	80.0087	0.0003	0.0004
	4	17.2665	88.4601	7.9259	87.9346	0.0002	0.0006
	5	0.0001	88.4602	0.9376	88.8722	0.0001	0.0007
	6	0.015	88.4752	2.2918	91.164	0	0.0007
	7	0.0066	88.4818	5.4671	96.6311	0	0.0007
	8	10.5451	99.0268	0.062	96.693	0.0013	0.002
	9	0.0003	99.0272	0.012	96.705	0.0137	0.0157
	10	0.0979	99.1251	2.7359	99.4409	0.0119	0.0276
	11	0.0037	99.1288	0.0536	99.4945	0.683	0.7106
	12	0.0067	99.1354	0.0114	99.5058	0.116	0.8267
	13	0.0015	99.1369	0.1281	99.6339	0.093	0.9197
	14	0.0048	99.1418	0.0159	99.6498	2.8696	3.7892
	15	0.0018	99.1436	0.1587	99.8084	0.8786	4.6679
	16	0.0013	99.1448	0.1871	99.9955	0.3911	5.059
	17	0.1415	99.2863	0.0004	99.9959	0.1303	5.1893
	18	0.0211	99.3074	0.0038	99.9997	0.0012	5.1905
	19	0.0533	99.3607	0.0001	99.9998	0.4047	5.5952
l	20	0.5463	99.907	0	99.9998	0.0967	5.6919

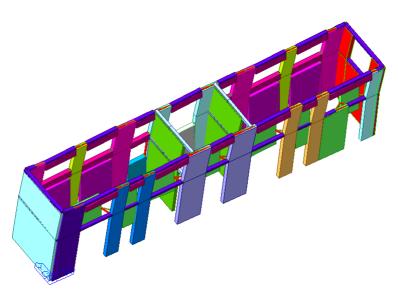


Figura 0-3 Forma modale n°1 del Fabbricato A [T=0.09s]

Verifiche strutturali

La verifica a pressoflessione e taglio sui pilastri e sulle travi dei fabbricati denominati capannone 1 e capannone 2 e 3 è stata eseguita in modo automatico con il programma di calcolo MIDAS GEN, previa assegnazione delle sezioni tipologiche e delle caratteristiche dei materiali. Le combinazioni delle azioni per cui sono state effettuate le verifiche sono quelle statiche allo SLU e quelle sismiche allo SLV. Il calcolo delle resistenze è condotto dal codice di calcolo in accordo alle NTC 2008. Di seguito si riporta l'output del programma di calcolo con i risultati della verifica del pilastro più

Di seguito si riporta l'output del programma di calcolo con i risultati della verifica del pilastro più sollecitato:

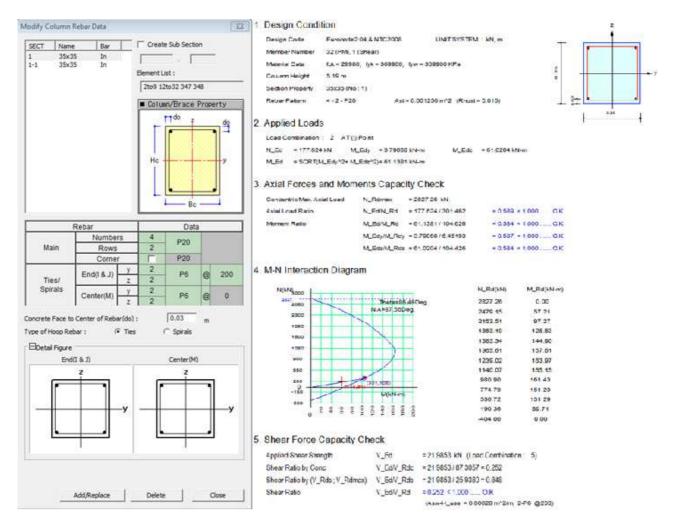


Figura 0-1 Verifica di un pilastro appartenente al Capannone 1 agli Stati Limite: SLU e SLV; Midas Gen

Analisi Elasto-Plastica Non Lineare Statica (Pushover)

L'analisi Non Lineare Statica (Analisi PushOver) è la principale analisi consigliata dalla Normativa attuale per la verifica degli edifici esistenti. Essa consiste nell'applicare alla struttura i carichi gravitazionali e, per la direzione considerata dell'azione sismica, un sistema di forze orizzontali distribuite, ad ogni livello della costruzione, proporzionalmente alle forze d'inerzia e aventi risultante (taglio alla base) F_b . Tali forze sono scalate in modo da far crescere monotonamente, sia in direzione positiva che negativa e fino al raggiungimento delle condizioni di collasso locale o globale, lo spostamento orizzontale d_c di un punto di controllo coincidente con il centro di massa dell'ultimo livello della costruzione. Il diagramma F_b - d_c rappresenta la **CURVA DI CAPACITÀ** della struttura. La stessa Normativa, al par. 7.3.4.1 richiede di considerare almeno due distribuzioni di forze d'inerzia, ricadenti l'una nelle distribuzioni principali (*Gruppo 1*) e l'altra nelle distribuzioni secondarie (*Gruppo 2*).

Al *Gruppo 1* appartiene una distribuzione di accelerazioni proporzionale alla forma del modo di vibrare, applicabile solo se il modo di vibrare fondamentale nella direzione considerata ha partecipazione di massa non inferiore al 75% per strutture in c.a. ed acciaio (par. 7.3.4.1) e non inferiore al 60% per strutture in muratura (par. 7.8.1.5.4).

Nel caso in esame l'analisi dinamica modale fornisce risultati di partecipazione di masse in X ed Y rispettivamente del 79,45% e 99,81% per il capannone 1, del 99% e 81% circa per il capannone 2-3 e del 65% e 64% circa per il fabbricato B. La condizione di cui sopra è pertanto verificata per tutti e tre i fabbricati.

Al *Gruppo 2* appartiene una distribuzione uniforme di forze, da intendersi come derivata da una distribuzione uniforme di accelerazioni lungo l'altezza della costruzione; tale requisito è soddisfatto mediante l'utilizzo di forze proporzionali alla massa, intesa quest'ultima come costante lungo l'altezza dell'edificio.

In sostanza, quindi, si sono inseriti nel programma di calcolo 8 *Loadcase di PushOver*, 4 proporzionalmente alle forme dei modi vibrare rispettivamente nelle due direzioni e 4 proporzionalmente alle accelerazioni uniformi. Gli 8 casi di carico sono i seguenti: modo Y, modo X, modo –Y, modo-X, massa Y, massa X, massa –Y e massa –X.

Si precisa che l'analisi è stata svolta, per i due fabbricati con copertura a "shed", in regime di controllo di forza (Load Control), non avendo la possibilità di un controllo in regime di spostamenti in assenza di piano rigido.

Per il fabbricato B l'analisi è invece stata svolta in regime di <u>controllo di spostamento</u> (*Displacement Control*) avendosi, in tale caso, presenza di piani rigidi.

Ai fini delle verifiche di sicurezza, gli elementi strutturali in c.a. soggetti ad azione sismica vengono distinti in (paragrafo C8.7.2.5 della C.M. n. 617/2009):

- *elementi/meccanismi duttili:* travi, pilastri e pareti inflesse in presenza o meno di sforzo normale:
- elementi/meccanismi fragili: meccanismi di taglio in travi, pilastri, pareti e nodi.

La valutazione delle capacità di resistenza degli elementi è subordinata allo stato limite richiesto ed al tipo di elemento duttile/fragile. In particolare, la C.M. n. 617/2009, sempre al paragrafo C8.7.2.5, specifica che:

- La verifica degli elementi duttili consiste nel verificare che, per ogni elemento, la domanda di deformazione, espressa in termini di rotazione alla corda θ_i , sia minore o uguale della capacità di rotazione θ_{SL} , valutati allo stato limite considerato. In particolare:
- Allo **S.L.C.** (Stato limite di Collasso), la capacità di rotazione da impiegare per le verifiche coincide con la capacità di rotazione ultima $\theta_u = \theta_y + \theta_p$ data dalla somma tra la rotazione alla corda in campo elastico θ_y e la rotazione alla corda in campo plastico θ_p . Per la valutazione della capacità di rotazione ultima la Normativa fornisce la seguente espressione:

$$\theta_{u} = \frac{1}{\gamma_{el}} \left(\theta_{y} + (\phi_{u} - \phi_{y}) L_{pl} \left(1 - \frac{0.5 L_{pl}}{L_{V}} \right) \right)$$

• Allo **S.L.V.** (Stato limite di Salvaguardia della Vita), la Normativa suggerisce di assumere come capacità di rotazione totale rispetto alla corda un valore pari a 3/4 del valore ultimo θ_{μ} .

$$\theta_{SD} = \frac{3}{4}\theta_u$$

• Allo **S.L.D.** (Stato limite di Danno), si assume come capacità deformativa la rotazione rispetto alla corda in campo elastico θ_y che può essere valutata mediante la seguente formula fornita dalla Normativa:

$$\theta_{y} = \phi_{y} \frac{L_{v}}{3} + 0.0013 \left(1 + 1.5 \frac{h}{L_{v}} \right) + 0.13 \phi_{y} \frac{d_{b} f_{y}}{\sqrt{f_{c}}}$$

per travi e pilastri

$$\theta_y = \phi_y \frac{L_V}{3} + 0.002 \left(1 + 0.125 \frac{L_V}{h}\right) + 0.13 \phi_y \frac{d_b f_y}{\sqrt{f_c}}$$

per pareti

La verifica dei meccanismi fragili consiste nel verificare la resistenza a taglio degli elementi strutturali come per il caso di nuove costruzioni per situazioni non sismiche. Le resistenze dei materiali da impiegare in questo caso sono quelle ottenute come media delle prove eseguite in sito e/o da fonti aggiuntive, divise per il fattore di confidenza e per il coefficiente parziale del materiale.

Come ulteriore verifica delle capacità di resistenza delle strutture nei confronti dell'azione sismica si è proceduto ad effettuare un raffronto tra le curve di capacità ottenute dalle analisi di *Pushover* con lo spettro elastico di Normativa ai vari stati limite (SLC, SLV, SLD e SLO) mediante sovrapposizione tra le due curve, nonché mediante "check" tra spostamento richiesto dallo spettro (*Demand*) e spostamento accettabile dalla struttura (Capacity). Il software stesso dà informazioni di "check" solamente sugli stati limite di operatività e danno (SLO e SLD) per i quali i limiti di spostamento sono fissati da Normativa.

Per far fronte alla necessità di controllo per gli ulteriori due stati limite di Salvaguardia della Vita (SLV) e di Collasso (SLC) si è proceduto a determinare, tramite post-elaborazione dei risultati dell'analisi di *Pushover*, un **INDICATORE DI RISCHIO SISMICO** (I.R.) definito come rapporto fra l'accelerazione al suolo a_{SL} che porta al raggiungimento di un particolare stato limite e l'accelerazione al suolo a_{SL} corrispondente al periodo di ritorno di riferimento, entrambe riferite a suolo roccioso di tipo A:

$$I.R._{SL} = \frac{a_{SL}}{a_{g,SL}}$$

L'indicatore di rischio così definito permette di quantificare le capacità di resistenza della struttura nel suo complesso nei riguardi delle azioni sismiche. Valori di I.R. maggiori o uguali all'unità denotano una situazione di verifica soddisfatta nel senso che l'edificio nel suo complesso è in

condizioni di sicurezza rispetto allo stato limite considerato, avendo risorse di resistenza adeguate a fronte della "domanda" di resistenza e deformabilità richiesti dal sisma.

Si riportano nel seguito i risultati ottenuti per gli edifici analizzati.

Capannone 1

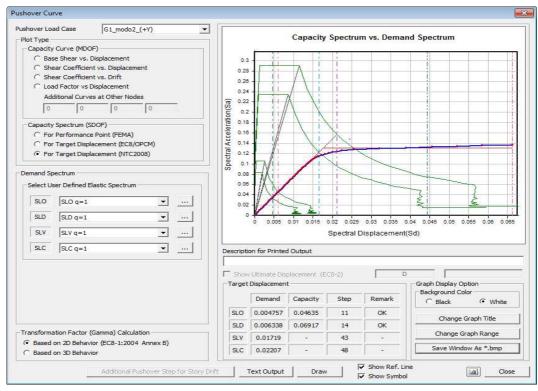


Figura 0-1 Curva di capacità, Capannone 1 - Gruppo 1, direzione trasversale

Autori:

Ingg Paolo Ruggieri, Leonardo Isgrò – ENARCH SRL, Piazza Savoia, 6 (TO)

Coordinamento indagini e rilievi in situ, progettazione e direzione lavori interventi strutturali

A cura del Supporto Tecnico del Settore di Calcolo Strutturale e Geotecnico:

Ing. Paolo Sattamino - Direttore Commerciale

Ing. Adalgisa Zirpoli - Coordinatore Tecnico

Ingg. A. Bertella, M. Carni, M. Dalla Valle, R. Giangualano

Per il documento completo ed ulteriori approfondimenti con tecnici specializzati potete contattarci al seguente indirizzo:

assistenza.midas@harpaceas.it,

oppure al numero: 02 89 17 41

Grazie per la preferenza accordataci!

ANALISI E TECNOLOGIE PER LA MESSA IN SICUREZZA DEGLI EDIFICI INDUSTRIALI

Ing. Corrado Prandi — Titolare Studio Tecnico Ing. Prandi Corrado, Correggio (RE)

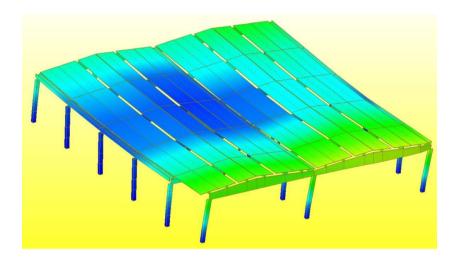
http://www.studioprandi.com/

A cura del Settore di Calcolo Strutturale e Geotecnico

Ing. Paolo Sattamino - Direttore Commerciale

Ing. Ada Zirpoli - Coordinatore Tecnico

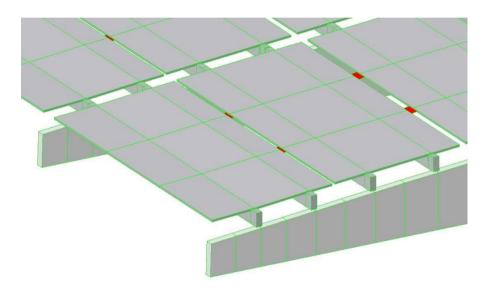
Ingg. A. Bertella, M. Carni, M. Dalla Valle, R. Giangualano - Supporto Tecnico



CREAZIONE DEL MODELLO STRUTTURALE

Valutazione della distribuzione del danno e degli spostamenti residui nella struttura per riconoscerne le parti maggiormente sollecitate dal sisma
Valutazione delle modalità rilevate nelle connessioni tra i componenti strutturali, per attribuire un probabile grado di vincolo nel modello
Attribuzione del vincolo dei pilastri in fondazione
Determinazione della max. azione del sisma accettabile per la costruzione allo stato attuale
Inserimento degli interventi di miglioramento sismico e determinazione della max azione del sisma accettabile per la costruzione nello stato modificato

Valutazione della distribuzione del danno e degli spostamenti residui nella struttura per riconoscerne le parti maggiormente sollecitate dal sisma

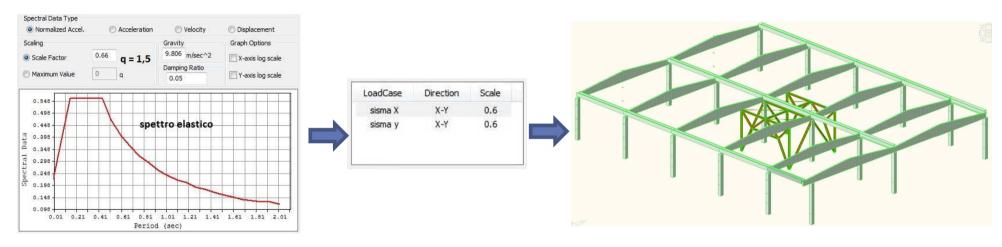


Le parti riconosciute al vero maggiormente gravate, dovrebbero trovare coerente riscontro nei risultati offerti dal modello; la presenza eventuale di importanti difformità, indirizza nell'intervenire sul modello per conseguire risultati più coerenti.

creazione del modello strutturale

Valutazione delle modalità rilevate nelle connessioni tra i componenti strutturali, per attribuire un probabile grado di vincolo nel modello

L'attenzione nella modellazione delle connessioni tra i componenti strutturali, favorisce l'attribuzione delle più probabili rigidezze al modello, con possibilità di una maggiore accuratezza nell'individuazione del tagliante sismico di pertinenza e nella distribuzione delle forze d'inerzia nelle varie parti della costruzione


Attribuzione del vincolo dei pilastri in fondazione

PLINTO	lato (cm)		290
N (kg)	27500		
M (kg*cm)	3400000		
eccentricità (cm)	124	>	48.3
smax (kg/cmq)	2.96		
K (kg/cmc)	1.00		
rotazione (°)	0.58		
rigidezza (kgm/rad)	3332144		

L'attenzione nella valutazione della possibile valutazione della rigidezza rotazionale in fondazione, favorisce l'attribuzione delle più probabili rigidezze al modello, con possibilità di una maggiore accuratezza nell'individuazione del tagliante sismico di pertinenza e nella distribuzione delle forze d'inerzia nelle varie parti della costruzione; l'attribuzione del vincolo di incastro in fondazione può non essere la condizione più cautelativa.

creazione del modello strutturale

60/0,573 = 104,7 raggiunta per il pilastro una capacità pari al 105% di quella richiesta ad una nuova costruzione di caratteristiche comparabili

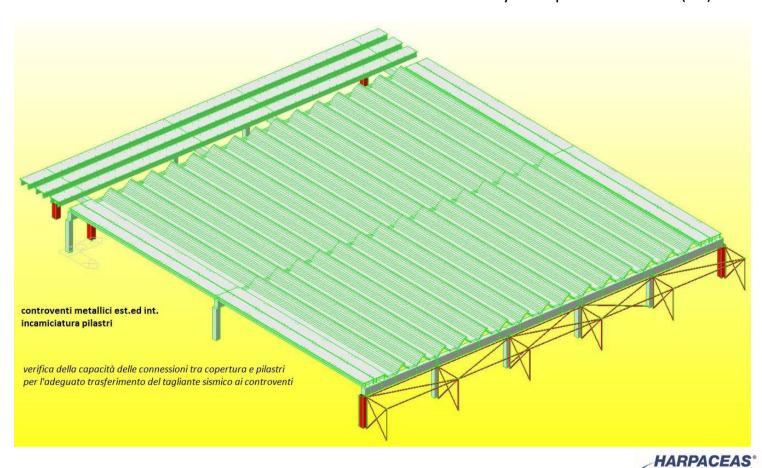
Pilastro 45x45: 0,497 < 1;

Pilastro 45x45 sommità: 0,573 < 1;

Pilastro portapannello: 0,156 < 1;

MIGLIORAMENTO SISMICO CON INSERIMENTO DI NUOVI CONTROVENTI METALLICI

- è una delle varie possibilità di intervento
- può essere combinata con altre modalità di intervento
- può essere preferita per la localizzazione circoscritta e/o esterna degli interventi
- di caso in caso presuppone l'attuazione di alcuni accorgimenti

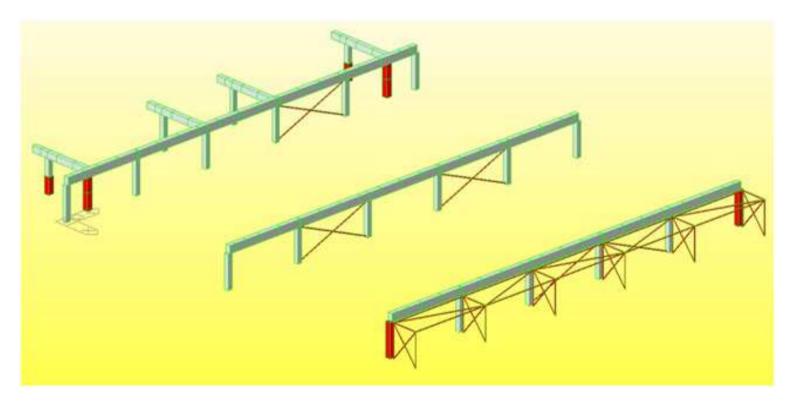


The state of the s

PARTICOLARE D2 PARTICOLARE D2 PARTICOLARE D2 PARTICOLARE D2 PARTICOLARE D2

Seminari Calcolo Strutturale

Immobile Navy Group – Rio Saliceto (RE)



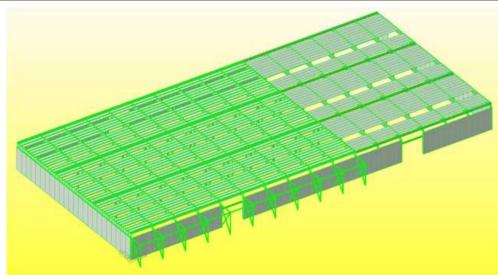
dimensioni principali del capannone: 52.00 x 45.00 x 5.00 (m)

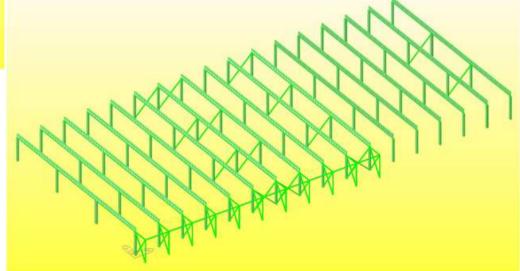
ag: 0.22 (g)

incidenza pilastri: 450 (m³capannone/pilastro)

controventi metallici: 0,4 (kg carpenteria/m³capannone)

Seminari Calcolo Strutturale


Seminari Calcolo Strutturale



Magazzino CARBONI S.p.a. – Correggio (RE)

Interventi in progetto:

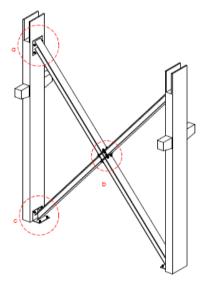
- placcaggio di pilastri alle estremità,
- controventi metallici diagonali tra i pilastri,
- carpenteria di controvento esterna.

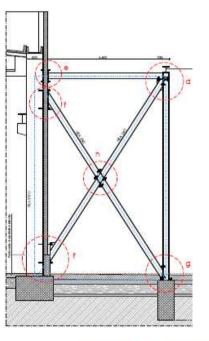
dimensioni principali del capannone: 128.00 x 60.00 x 6.50 (m)

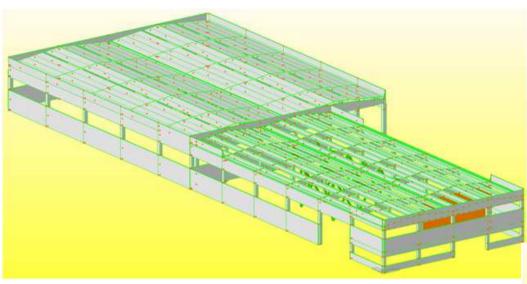
0.22 (g) ag:

incidenza pilastri:

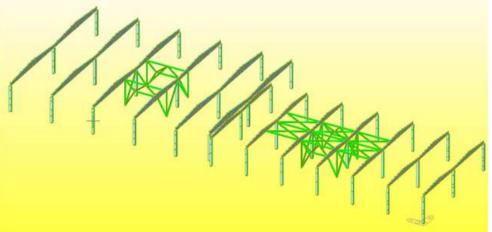
controventi metallici:


735 (m³capannone/pilastro)

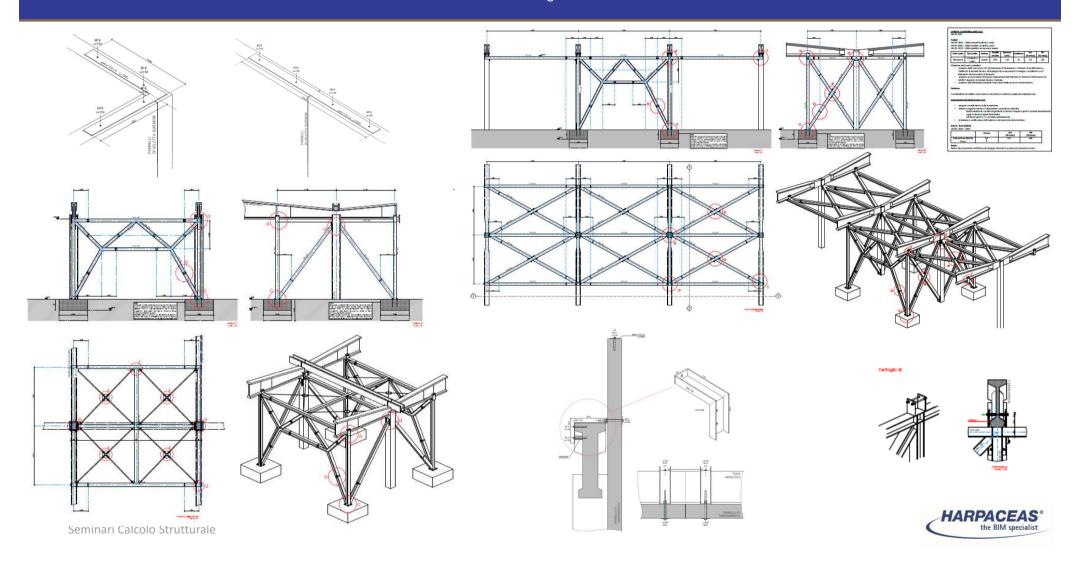

0,60 (kg carpenteria/m³capannone)



Fabbricati FIRMA S.p.a. – Correggio (RE)


Interventi in progetto: carpenteria di controvento interna.

dimensioni principali del capannone: 41.50x33.00x7.00 + 45.00x23,00 x 7.00 (m)


ag: 0.22 (g)

incidenza pilastri: 345 (m³capannone/pilastro)

controventi metallici: 1,30 (kg carpenteria/m³capannone)

Per il documento completo ed ulteriori approfondimenti con tecnici specializzati potete contattarci al seguente indirizzo:

assistenza.midas@harpaceas.it oppure al numero 02 891741.

Grazie per la preferenza accordataci

